Dissimilarity for functional data clustering based on smoothing parameter commutation
نویسندگان
چکیده
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملNonparametric regression for functional data: automatic smoothing parameter selection
We study regression estimation when the explanatory variable is functional. Nonparametric estimates of the regression operator have been recently introduced. They depend on a smoothing factor which controls its behavior, and the aim of our work is to construct some data-driven criterion for choosing this smoothing parameter. The criterion can be formulated in terms of a functional version of cr...
متن کاملClustering in ordered dissimilarity data
This paper presents a new technique for clustering either object or relational data. First, the data are represented as a matrix D of dissimilarity values. D is reordered to D∗ using a visual assessment of cluster tendency algorithm. If the data contain clusters, they are suggested by visually apparent dark squares arrayed along the main diagonal of an image I (D∗) of D∗. The suggested clusters...
متن کاملMethods for Parameter Estimation of the Lorenz Functional Forms and Compare Them Based on Household Expenses Data
In the modern society and specially in our country discussion of poverty, wealth and social justice are the most important arguments of public and private circles. The most important graphical tools which are used to describe the quantity of centralization like wealth in a society is Lorenz curve. In these situations, most of econometricians measure the economic inequalities. In the discrete ca...
متن کاملClustering based on Dissimilarity First Derivatives
A hierarchical agglomerative clustering algorithm based on the analysis of dissimilarity increments between neighboring patterns is presented. The first derivative of dissimilarity between neighboring patterns inside a natural cluster is modelled by an exponential distribution, this statistic characterizing the cluster. A cluster isolation criterion is defined based on estimates of each cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Methods in Medical Research
سال: 2017
ISSN: 0962-2802,1477-0334
DOI: 10.1177/0962280217710050